|本期目录/Table of Contents|

[1]毕厚海,赵改平△,邢峰,等.上颈椎C0-C3节段不同载荷作用下生物力学特性的有限元分析*[J].生物医学工程研究,2019,04:429-434.
 BI Houhai,ZHAO Gaiping,XING Feng,et al.Finite element analysis of biomechanical characteristics of the C0-C3 upper cervical motion segments under different loads[J].Journal of Biomedical Engineering Research,2019,04:429-434.
点击复制

上颈椎C0-C3节段不同载荷作用下生物力学特性的有限元分析*(PDF)

《生物医学工程研究》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2019年04期
页码:
429-434
栏目:
出版日期:
2019-12-25

文章信息/Info

Title:
Finite element analysis of biomechanical characteristics of the C0-C3 upper cervical motion segments under different loads
文章编号:
1672-6278 (2019)04-0429-06
作者:
毕厚海1赵改平1△邢峰2王宏杰3董自强1杨加静1许海飞1
1.上海理工大学 医疗器械与食品学院,上海 200093;2.内蒙古包头市达茂联合旗医院 麻醉科,包头 014500;3.上海市第一人民医院 骨科, 上海 200080
Author(s):
BI Houhai1ZHAO Gaiping1 XING Feng2 WANG Hongjie3 DONG Ziqiang1 YANG Jiajing1 XU Haifei1
1.School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China; 2.Department of Anesthesiology,Damao United Flag Hospital,Baotou 014500,Inner Mongolia,China; 3.Department of Orthopedics, Shanghai General Hospital, Shanghai 200090
关键词:
上颈椎关节活动度不同载荷生物力学特性有限元分析
Keywords:
Upper cervical spineRange of motionDifferent loadBiomechanical characteristicFinite element analysis
分类号:
R318.01
DOI:
10.19529/j.cnki.1672-6278.2019.04.10
文献标识码:
A
摘要:
研究上颈椎C0-C3活动节段在不同载荷作用下前屈、后伸、侧屈和旋转时椎体应力、关节活动度(range of motion,ROM)及椎间盘的应力分布情况,探讨载荷改变对上颈椎生物力学特性的影响。基于CT图像数据建立人体上颈椎有限元模型,模型包括皮质骨、松质骨、纤维环、髓核、关节软骨、终板及韧带等结构,根据解剖特征赋予不同部位的材料属性,计算分析上颈椎C0-C3各节段在不同力矩作用下屈伸旋转时颈椎ROM、椎体应力和椎间盘最大应力变化趋势,与前人离体试验和有限元结果进行对比验证。人体上颈椎C0-C3节段在40 N和1.5 N·m载荷作用下,前屈时ROM最小,C0-C1、 C1-C2 、C2-C3各节段ROM分别为1.88°、2.16°和1.59°;后伸时ROM大于前屈,最大相差幅度为2.32°;侧屈时ROM大于前屈,增幅分别为2.57°、2.41°和0.49°; 轴向旋转时ROM最大,相对于侧屈ROM分别增加了247.64%、282.71%和-43.27%。当施加40 N预载荷和1.0、1.5、2.0、2.5 N·m力矩时, 随着力矩等值增大,上颈椎C0-C3节段整体ROM呈非线性增加,变化特征为前屈时最小,旋转时最大;椎间盘最大应力值呈非线性增加(前屈和侧屈)和减少(后伸和旋转),ROM和应力分布趋势和前人研究结果一致。上颈椎三维有限元模型在不同载荷下数值分析的结果符合正常人体颈椎生理活动范围和生物力学特性,为临床颈椎病理和生理的生物力学研究提供理论依据。
Abstract:
To study the influence of the human upper cervical spine C0-C3 motion segments on the stress distribution,range of motion(ROM)changing situation and intervertebral discs stress distribution characteristics during flexion, extension, lateral bending and rotation cases under different loads, to explore the influence of load change on the biomechanical characteristics of the upper cervical spine . The CT images of the upper cervical spine C0-C3 were selected for a three-dimensional finite element model establishment which was consisted of the vertebral body, intervertebral discs, the end plate, the rear part of the structure ,facet joints and ligaments. Cervical tissue were endowed with different composition of material properties to calculate and analysis the variation trends of ROM, stress in upper cervical C0-C3 segments and maximum stress of intervertebral disc under different torques of flexion-extension and rotation. The results were compared and demonstrated to the previous in vitro experiments and finite element results. Under the moment of 40 N and 1.5 N〖KG-*2〗·〖KG-*3〗m, the minimum ROMs of C0-C1, C1-C2 and C2-C3 during flexion were 1.88°,2.16°and1.59°. The ROMs of extension was greater than that of flexion, the biggest difference amplitude was 2.32°.The Roms of lateral bending was significantly greater than that of flexion and increasing amplitude of ROMs was 2.57°,2.41°and 0.49°respectively.In axial rotation, the maximum ROMs appeard in the anterior vertebra and in comparison with the lateral flexion respectively increased 247.64%,282.71% and -43.27%. Under the moment of 40 N and 1.0,1.5,2.0,2.5 N〖KG-*2〗·〖KG-*3〗m,the whole ROMs of upper cervical spine C0-C3 motion segments was nonlinearly increased with the torque increasing,indicating the minimum ROMs during flexion while the maximum stress during axial rotation .At the same time,the maximum stress of the intervertebral disc increased nonlinearly in the cases of flexion and lateral bending, and decreased nonlinearly in the cases of extension and axial rotation.The range of motion and stress distribution characteristics of model were similar to the previous studies in vitro experiments.The results of the three-dimensional finite element model of the upper cervical spine under different loads are consistent with the physiological range and biomechanical characteristics of the normal human cervical spine, providing a theoretical basis for the clinical study of the pathological and physiological biomechanics of the cervical spine.

参考文献/References

备注/Memo

备注/Memo:
(收稿日期:2019-03-16)国家自然科学基金资助项目(11502146);上海市自然科学基金资助项目(15ZR1429600)。△通信作者Email:zgp_06@126.com
更新日期/Last Update: 2020-01-03